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VARIANCE REDUCTION BY IMPORTANCE  SAMPLING AND THE METHOD O F  

SPLITTING IN MONTE CARLO  CALCULATIONS 

by Burt M. Rosenbaum 

Lewis  Research  Center 

SUMMARY 

The two techniques of variance  reduction  that are considered are (1) importance 
sampling  and (2) splitting  and  Russian  roulette.  Based on the  value of the  variance, op- 
timum  biasing  sampling  procedures are investigated  and it is determined  when  adjoint 
biasing  yields  the  minimum  variance.  It is shown  that  the  method of Russian  roulette 
may  lead  to  an  increase,  rather  than a decrease,  in  variance. A short   example  i l lus- 
trates  the  methods  used. 

INTRODUCTION 

Before  the  advent of the  computer,  when a problem  involved a large  number of 
members  or  participants (e. g. , when  dealing  with,  say, a collection of molecules), 
analyses  usually  could  not  be  carried  out  for  the  general case. Because of the  complex- 
ities,  analytical  solutions  could  only  be found in  limiting  situations  or  where  simplifying 
assumptions  could  be  made. In the  regions  where  such  assumptions  could  not  be  made, 
realistic  theoretical  analyses  could  not  be  accomplished  and  so-called  educated  guesses 
were  resorted  to.  

The  computer  enables  an  investigator  to  compare  the  theoretical  behavior of his 
conceptual  model  with  experimental  data  in  the  complicated  intermediate  region  where 
standard  analyses  break down.  When the Monte Carlo method is used,  the  possibilities 
of occurrence  are  encoded  into  the  computer  program  and  the  behavior of a large  number 
of sample  particles is simulated by computer  decisions as the  sample  particles are fol- 
lowed  through  the  system. On the basis of the  data  thus  generated  average  behavior 
patterns  may  be  calculated.  According  to  the  information  needed,  the  computer  may  be 
instructed  to  spew  out  local  densities,  total  kinetic  energy  densities,  heat  and  mass 
transfer  rates,   pressures,   probabili t ies of penetration  through a barrier, fission  rates,  
chemical  reaction  rates,  and so  forth. 



In an  attempt  to  decrease  the  computation  t ime  necessary  for  answers as well as to 
enable  one  to  handle  problems  which  originally would overload  the  computer  capacity, 
techniques  were  evolved  which  established  more  efficient  simulation  processes  than di- 
rect simulation;  that is, better  accuracy  could  be  obtained  for a given sample size. The 
systemization of such  error-reducing  procedures  was  due  in  large  measure,   to  the  work 
of H. Kahn (refs. 1 to 4). 

This  report  concerns  itself  with  two of these  techniques: (1) importance  sampling 
and  (2)  splitting  and  Russian  roulette. The theory  has  been  extensively  treated in the  lit- 
erature  and  applications of the two techniques,  used  separately  or  in  combination, 
abound  in  computer  programs (refs. 5 to  13). In this  report ,  both  techniques are formu- 
lated  in a unique  manner  and  equations  for  the  variance  resulting  from  their use a re   de-  
rived.  These  equations are generalized  to  apply  to  any  number of s e t s  of random  varia- 
bles  and  optimum  procedures are developed. In addition, a brief  example is posed  and 
analyzed  to  illustrate  the  method.  It is hoped that  the  formulation of the  problem as pre-  
sented  herein  serves  to  clarify the  basic  concepts  involved. 

IMPORTANCE  SAMPLING 

The  following  problem is considered.  Suppose  we  are  given a function g dependent 
on three  or   more  sets  of random  variables 2 = x l ,   x 2 , .  . . , xn  where x represents  all 
variables  in  the ith s e t  of random  variables  and  we  wish  to  determine  the  mean  or  ex- 
pectation  value of g: 

i 

In equation (l), the  multivariate  probability  density  function is denoted by f(g) = f(xl, 
x2,  . . . ,xn).  When  the  relation 

is used  where  the  symbol  f(x3, . . . . xn/xl,  x2) is the  conditional  probability  density 
function of the  random  variables  x3, .  . . , xn  given  that  xl,  x2  have  taken on fixed  val- 
ues,  equation (1) can  be  written 

2 



It  can be seen,  therefore,  that  E[g/xl,x21,  the  expectation  value of g given  that x1 
and  x2  have  been  fixed,  satisfies 

The  variance of g for  f i x e d  x1 and x2 is given  by 

If w e  pick  from a population  distributed  in  accordance  with  the  probability  density 
function  f(xl, x,), then a weight  function  w(x , x  ) can  be  incorporated  into  the  density 
function  which  may  act  to  decrease  the  value of the  variance  ag/xl,  x2  while  keeping 
the  value of E[gJ invariant.  The new probability  density  function  f(x1,x2)/w(xl,  x2) 
satisfies  the  relation 

1 2  2 

and  equation (1) becomes 

The  method  just  described  whereby a weight  function is employed is called  "importance 
sampling"  and, by equation (7), we see that  the  expectation  value of g(x')  when sampling 
f rom a population  with  probability  density  function f(z) is equal  to  the  expectation  value 
of w(x , x )g(F) when sampling  from a population  described  by  the  density  function 1 2  
f ( W w ( x l ,  x2). 

The  variance of w(x x )g(c)  associated with  the  probability  density  function 1' 2 
f(x')/w(xl,x2) is given by 



where 

A 

The  particular  weight  function  w(xl,  x2)  that  minimizes  the  variance of w(xl, x,)g(X') 
subject  to  the  constraint  given by equation (6) satisfies the  equation 

and  the  minimum  value of the  variance is given  by 

This  formulation, as mentioned  before, is the  method of importance  sampling  in  the two 
variable sets x1 and  x2. 

It  may be stated  here  that if N measurements of w(x,,x,)g(X') were  made,  then  the 
variance of the  average is merely  equal  to  the  value  given by equation (8) divided  by N. 

The  concept of s tages  is now introduced  and  it  will be employed  throughout  this re- 
port. We assume  that  in  the  first  stage we sample  from  the  xl-distribution  and  in  the 
second  stage  from  the  x2-distribution. We write 

4 



It  should be noted  that a knowledge of the  function  w(x1,x2)  uniquely  determines  the 
functions  u(xl)  and  u(xl,  x2).  Substitution of equation  (13)  into  equation  (14b) results in  
the  relation 

s o  that  the  function  u(x,)  and,  hence,  the  function  u(x1,x2)  may  be  directly  solved  for 
once  w(x1,x2) is known. 

Picking  from a population  with  density  function  f(xl,  x2)/w(xl,  x2) is equivalent  to 
first  choosing  x1  from a population  with  density  function  f(xl)/u(xl)  and  then  choosing 
x2   f rom a population  with  density  function  f(x2/xl)/~(xl,~2)  where  the  value of x1 for 
the  second  population  has  been set at  the  value  chosen  from  the  first  population.  Equa- 
tion (8) can now be  written  in  the  more  revealing  form,  namely, 

5 
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In  equation  (8a),  the  variance  has  been  broken down into  components  where  each of the 
integrals on the  right  side  can  be  interpreted  in  the  following way: (1) the first integral 
is due  to  the  variation  in g when xl  and x2 a r e  both  fixed  and  the  other  variables are 
allowed  to  vary;  (2)  the  second is due  to  the  variation  in  E[g/xl,x2] when x1 alone  has 
been  fixed  and x 2  is allowed  to  vary;  and (3 )  the  third  integral is due  to  the  variation  in 
E[g/xl]  when  x1 is allowed  to  vary.  Note  that  it  would  be  an  easy  task to generalize 
equation (sa) to  any  number of s e t s  of pertinent  variables. 

FORMULATION O F  THE METHOD O F  IMPORTANCE  SAMPLING 

FOR DISCRETE VARIABLES 

For  the  sake of mathematical  simplicity,  assume  that  each of the se t s  of random 
variables   xl , .  . . , xn  are discrete  and  let   us  set  up the  foregoing  problem by using a 
notation  in  keeping  with  this  assumption.  The  results  obtained  can  readily  be  modified  to 
apply  to  the case  when  the variables  are  continuous,  and  the  simpler  discrete  model  will 
be  used  to  establish  the  relations  that  arise when considering  the  method of splitting. 

First  the  notation is defined.  Let  the  possible  value  sets of x1  be  put  into  one-to- 
one  correspondence  with  the  index i=l, 2,3,. . . ; let  the  possible  value  sets of x2 be 
put  into  one-to-one  correspondence  with  the  index j =1, 2 , 3 , .  . . , etc.  Whether  the  total 
number of possible  value sets for  any  variable is finite or infinite  does  not  change  the 
problem.  Set pi equal  to  the  probability  that x1 takes  on  its ith value  set  and  set 

Pij 
has   i ts  ith value  set.  We  have 

equal  to  the  conditional  probability  that  x2  takes  on  its j th  value  set  given  that x1 

6 



i, j 7 k 7 .  . . i 

E. [gl= 
1 'ijPijkpijkl. * .gijkl. . . = p..E..[g] 1.l u 

j 7 k 7 1 7 .  . . j 

2 

gij k , l , .  . . 
f J =  pijkpijkl. . . (gijkl. . . - ~ i j [ g ~ ) ~  

(Primed  and  unprimed  equations of the  same  number are analogous. ) 
The  scheme by which  the  average of g is obtained is illustrated  in  sketch (a) where 

-K 
the  number of possible x1 and  x2  (for  each  x1  value  set)  value sets are shown as two 
in  the  sketch. A sample  size N is first pulled from  the  xl-population  where  the  proba- 
bility of getting  the ith value  set  of x1 is pi/ui.  The number  in  the  sample  possessing 
the ith value set of x1 is designated as ni and  the  expectation  value of ni is 
N(pi/ui). Then  this  sample is further  subdivided by picking  from  that  x2-population 
corresponding  to  the  value  set of x1  where  the  probability of getting  the j th  value  set 
of x 2  given  that  the ith value  set of x1  has  been  chosen is p.  ./u..  (The ui and u. 
are weight  functions  that  play  the  same  role as u(xl)  and  u(xl,x2)  dld  in  the  case  where 
the  random  variables  were  considered as continuous. ) The  number of members  in  the 
sample  possessing  the ith value  set of x1 and  the jth value set of x2 is denoted as 
n We note  that 

11 1.l" 1 j  

i j '  
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i 

(14a') 

(14b') 

Let  (g. .) be  the ath measurement of g  where  x1  has  been  fixed  at its i 
value  and  x2  at  its jth value  regardless of the  values of the  other  sets of variables. 
There   a re  n. such  measurements.  Consider  the  random  variable 

th 
11 a 

1 j  

N 

Equation  (16)  can  be  written 

where 

U.U.. - 
" - ' 'J nij(gij) 

N 

Taking  the  expectation  value of Z..  gives 11 

U.U..  U.U.. 
E[Z..] = "!d E n. .(g. .) = 9 E [ 'J [y '1; N [ 'J;] N 

n.  .E  (g..)/n.. 

8 



is the  expectation of the  average  measurement of g..  when  the  num- 
1J 

ber  of measurements is n...  Because  this  expectation  value is independent of the  num- 
ber of measurements,  the  equation  becomes 

1J 

U.U.. Pi P. 
E[Z..] = 3 E..[g]N -- -g = p  p..E..[gl 

IJ N 'J u. u.. 
1 13 

i 1~ IJ 

so that 

Hence  Z is an  unbiased  estimator of E[g]. 
We  wish  to  find  the  variance 0; of Z. The  following  relation  holds: 

OZ = E[z2]  - E2[Z] = E[ZijZiI j , ]  - E  [g] 
2 

i, j ,  i', j '  
" _  

Considering  the  terms of the  first  summation on the  right  side of equation (20) gives 

2 2  
1 1 j  02 
N2 gij '3 i J  

u. u. 2 2  u.  u.. 
- - ." E[n. . ]  + 3 E2.[g]E[n:j] 

N2 

The  relation 

9 



has  already  been  employed  in  obtaining  equation (18). To  find  an  expression of E n 

we  employ  the  fact  that,  for a specified  value of ni, the  quantity n. .  is distributed as a 
binomial  variable  with  probability p. ./u.. of "success"  where  the  number of t r ia l s  is 
equal  to n.. Hence 

[ 3 7  

11 
11 11 

1 

Thus,  the  terms of the  first  summation are given by 

Considering  the  terms of the  second  summation  gives,  for j f j ' ,  

__ __ 
where  we  have  used  the  fact  that (g..) and (g. .?)  involve  measurements  made on two 

11 11 

10 



different  groups of the  sample  and,  hence, are independent  variables.  We  have 

Now with n. fixed,  nijt is a binomial  variable,  where  the  number of trials is (ni - nij) 
and  the  probability  per  trial of taking on the j T t h  value set of x2 is (pijq/uijv)/ 
[1 - (pij/uij)].  The  denominator 1 - (p. ./u. .) is needed as a normalizatlon factor modi- 
fying  the  probability  p.  .,/u..  because,  with  n..  fixed,  none of the (ni - n. .) trials can 

1J give rise to a member  having  the jth value  set of x2. Thus 

1 j  

11 1I 
11 11' 13 

and 

Continuing, 

u.. 
11 



Hence, for jfj', 

Considering  the  terms of the  third  summation of equation (20), we have, for i#i', 

where 

E[n..n.,.r] 13 1 J = E[n..E[niTjV/nij]] 13 

Hence, for ifi' , 

E[ZijZi' j ?  I = PiPi'PijPi' j? Eij[t?lEi' j f  [ g ]  1 - - i k )  
Substituting  equations (21)  to  (23)  into  equation  (20)  and  using  the  relations 

E..[g ] = o2 + Eij[g] 2 2 
11 gi  j 

and 

12 



yield 

/ \ 2  

Equation  (8'),  which is analogous  to  equation  (8),  can  be  written  in a form analogous  to 
equation  (8a) as 

The  analogous  equations  to  equations ( lo),  ( 1 l), and ( 15) a r e  

E 
w.. = 

1J 



I 

MODIFICATION TO INCLUDE  THE MFTHOD O F  SPLITTING 

We now modify the  scheme by which  the  average of g is obtained  in  accordance 
with  sketch  (b). 

- P1 
"1 

- 1 
s1 

Again  the  possible x and x2  (for  each  x1  value set) value se t s  are shown  in  sketch  (b) 
as two in  number. 

The first  step  in  the  sampling  procedure  remains  the  same; a sample of s ize  N is 
f i r s t  picked from  the  xl-population  where  the  probability of getting  the ith value  set of 
x1 is pi/ui. The  number  in  the  sample  possessing  the ith value set of x1 is desig- 
nated as ni and,  for a sample of s ize  N, the  expectation  value of ni equals (pi/ui)N. 
This  number n. is then  multiplied by the  splitting  factor l/si to  yield  the  number 
vi = (l/si)ni  that now possesses  the ith value  set  of xl.  (It  may  be  noted  at  this  point 
that no longer  does  the  sample  necessarily  consist of N members  because vi # N 

in  general. ) The sample is further  subdivided on the  basis of the  variable  x2  and  n.. 
11 

re?resents  the number of members  in  the  sample  with  the ith value  set  of x1  and  the 
j th  value  set of x2  where  the  probability  that a member  possessing  the ith value  set 

1 

1 

i 

14 



of x1 also  has  the th value  set  of x2 is p../uij.  Again,  the  splitting  factor l/sij is 
introduced  and  the  number of members   possessing  the ith value set of x1  and  the 
jth value set of x2  is changed  to v.. = n../s...  Finally, v.. measurements of g.. 
are made  where  the ath measurement is denoted as (gij)cy. 

I t  is observed  that two s teps  are included  in  each  stage: (1) importance  sampling 
where  the  weight  factor  l/ui or l/u..  alters  the  selection  probabilities  and (2) splitting 
where  the  splitting  factor l/si or l/s.. alters  the  numbers  selected.  Such a stage  will 
be designated as a "composite"  stage.  In  general,  whenever a splitting  step is present,  
the  total  number of members  in  the  sample  changes. 

1 3  

11 13 13 1s 13 

1J 

13 

The  random  variable  that is of interest  now is 

c% 
3 = i 7 j  

u.s.u..s..(g..) 
1  1 1J 1J 1J a 

N 

Proceeding  in  the  same  way as before,  we  write 

1 1 1J 1jF 

." 

U . S . U .  .s. u.s.u..s..v..(g..) 3 = 7 3ij; 3ij = 
1 1 1J 1J 1J 1J ~- (gij)a = ~" 

N N 

U.S.U. .s.. 
1 3  1 1J  13 N 

- - 'j.21 E..[g]E[vij] = p.p..E..[g] (26) 

Hence, 3 is an  unbiased  estimator of E[g].  Continuing,  we  have 

15 



A s  before,  each of the  summation  terms of the  right  side of equation  (28) wi l l  be 
considered  in  turn.  For  the  first  summation  terms  we  get 

where 

and 

L 

This  yields 

16 



E [gj] = pipijEij[g] 2 2  2 + - 1 p.p..u.s.u..s..u 2 
1 1J 1 1 1J 1J g. 

1j 

p.p.. [ P i j U i ( l  - Si) - 
N '3 

For the second  summation jf j '  and 

2 2  u. s. u..u. . ' S . . S . . '  
E [ 3 . . 3 . . , ]  = ~ 1 1 1J 1J 

13 11 y A  E..[g]Eij,[g]E[vijvij,] 
N2 

13 

where 

17 



."" . 

and  we  use  the  method of Lagrangian  multipliers.  Equations  (34a)  and  (342)  merely re- 
quire  that  the  altered  probability  distributions  be  true  probability  distributions  whereas 
equations  (34b)  and  (34d)  require  that, on the  average,  the  number of members in  the 
sample after the  splitting is changed by the  factor  m1  for  the  xl-variable  stage  and 
m2  for  the  x2-variable  stage.  (From  this  point of view,  the  factors m1 and  m2  can 
be  regarded as "magnification"  factors. ) 

Multiplying each of the  equations of constraints by so-called  Lagrangian  multipliers 
and  adding  these  terms  to  the  expression  for  No2  defines  the  quantity 3 

2 2 2  . ), XIII denote  the  Lagrangian  multipliers. This expres- where X I ,  hII, X.  (i=l, 2 , .  . 
sion is minimized  with  respect  to  each of the  four  variables ui,  wi,  wij,  and  w.. 13 by 
setting  the  appropriate  partial  derivatives  to  zero: 

2 
1 

> 
- aL - - p.E?[g] - XI 2 p i = 0  -2 

1 1  
?U. 

1 -  * - 
u. ,  w. ,  u. . ,  w.. 
1 1 1J 1J 

r7L 2 X2 i I j  P P. 
~ 

. ,.  ,. A ?we. 
= p.p..o 1 13 gij - I11 3- - 

0 

u. ,w. ,u . .  w. .  
1 1 11' 1J 

w-.  
13 J 

20 



A 

Solving  equations  (34)  and (35) for  the  optimum  values of ui, wi, uij,  and  w..  gives 
^ _ A &  

11 

If ui, u. .  and  w..  take on the  values  given by equations  (36),  then it turns  out  that 
No2 is independent of the  form of wi so that  the  simplest  expression  for l/si in  ac- 
cordance  with  the  constraint  given by equation  (34b) is 

11' 11 

3 

which  yields 

A A 

It  can  be  seen  from  equations  (36a)  and  (36b)  that  the  optimum  values ui and  u.. of 
the  weight  factors  correspond  to  "adjoint  biasing"  (refs. 1, 10,  and 11) wherein  the 
biasing as given by the  reciprocal of the  u's is proportional  to  the  expected  contribution 
of the  member  to  the  answer  E[g]. 

The  minimum  value of No2 is found by substituting  equations  (36)  into  equation 

13 

( 3 2 4  
3 

(37)  
3 mlm2 
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The  previous  equations  can  easily  be  converted to the  case  wherein  x  and x2 a r e  1 
continuous  variables (or se t s  of continuous  variables).  The  following  relations  hold 

3=" CY " 

N 

where  the  summation is taken  over all measurements. 

(32a') 

(33a') 

(33b') 

(34a') 

(34b') 
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(34c') 

(34d') 

(3  6al) 

(3 6b') 

(36c') 

(36d') 

d "lm2 

CARRYING OUT OF THE SPLITTING  PROCESS 

The  question now is how best   to   carry  out   the   process  of splitting.  According  to 

sketch  (b),  in  the  splitting  part of the pi} stage,  the  number {:j of members is mul- 

tiplied by the  factor {l/sij to  yield  the  number {:j . This is a simplified  concept of 
1/Si 
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what  can  be  done  because {::iJ is not,  in  general,  an  integer.  Since,  in a l i teral  

sense,  we  cannot  work  with  fractional  members, a method  must  be  devised  to  give  the 
necessary  flexibility. 

In some cases, the  number { :j of members  corresponding  to a given  value of 

{ :j is left  to  chance  where  the  probability is so chosen  that  the  required  relations 

E[v./n.] = - n 1 
1 1  i 

S .  1 

hold. For  example,  suppose  we  write 

1 
" - I. + ri 
si 

1 

1 

11 

" - - I.. + r . .  
s . .  IJ lJ 

is a non-negative  integer  and 0 5 {::j < 1. Then, if each of the 

Ii+l 
members  gives  r ise  to of the  time  and {Iij+l} members { r:j} 
of the  time, on the  average,  each of the {d members  generates {l::ilJ] I . .+r..   members, 

thereby  satisfying  equations  (39).  This  process is an  example of the  "Russian  roulette' ' 
method  wherein  particles  are  created  or  annihilated by chance. If this  process is used 
as described  to  obtain  the  sampling as a function of the  variables  x1  and  x2,  then  the 
expression  for  the  variance of 3 as given by equation  (32) no longer  holds.  The  reason 

is that  additional  uncertainty  has  been  introduced by the  fact  that  the  variance of 
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corresponding  to a given  value of {:j is no  longer  zero.  For  this  technique,  the  num- 

ber of t imes .T that  the  members  give rise to { members is a binomial 

variable  where (fi } is the  probability of ‘?success”  and {:J is the  number of tr ials.  

Because 
i j  

{ ;j} = {Iini I. .n.. } +9- 
11 11 

i t  is easy  to show  that 

2 

si 

and 

2 n. .  

s . .  
11 

With  the  aid of these  relations,  the  expression  for  the  variance  may  be  obtained  in 
exactly  the  same way as carried  through  in  the  preceding  section.  The  random  variable 
3 is given by equation (24) and  each  term of equation (28) must  be  reevaluated  for  the 
situation  under  consideration. A point tha t  might  cause  some  difficulty is the  evaluation 
of  E[v. .v. .,] for  j f j ’ .  This is accomplished as follows: 

13 1 J  

where  f(n., v., n. ., nij,,  vij,  vij,) is the  appropriate  multivariant  probability  density  func- 
tion.  This  equation  can be written as 

1 1 1J 
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E[v. .v. ., 1 = //{I f(n., v., n..  n..  )dn. dv. dn..  dn.. 
13 13 1 1 13' 11' 1 1 1J 1J' 

v..V..,f(v..,  v..,/ni, vi, n.. n..  )dv..  dv.. 
11 1 J  11 1J 1J' 11' 11 1J' 

But  because  the  random  variables v.. and v.. only  depend on n. and  nij,,  respec- 
tively,  we  get 

1J 1J ' I j  

E[v..v. 11 11 .,] = / J / J r ( n i ,  v., 1 n.. 11' nij,)dni dvi dn.. 11 dnijl 

For  the  splitting  technique  involving  Russian  roulette as described,  the  increase 

A (E [3 fj]) in E [3 :j] over  that  value  given by equation (29) is found to be 

- ri)Eij[gj 2 -  

1 + - p.p. .w..s. .r . . ( l  - r..)E..[g] 2 
N 1 1J 13 1J 11  11 
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I 

Equation (31) is found to  remain unchanged.  The  increases  result  in  an  increase 

A (.3) in Ncr?~ over  that  value  given by equation (32): 

.(.a) = Piwisiri(l - ri)Ei[g] 2 + p.p  . .w..s . .r . . ( l  - r..)E..[g] 2 
1 11 13 1J  1J 13 1J 

i i, j 

To get  an  approximation of the  magnitude of this  increase,  we  make  the  tentative 
assumption  that  both ri and r.. are uniformly  distributed  over  the  interval (0, 1) so 
that 

1J  

r( 1 - r )d r  = - 
1 
6 

and  equation (41) becomes 

A ( N 9 )  = iz (43) 

In general,  the  increase  in  the  variance of 3 as given by this  equation is not  insig- 
nificant  and,  in  some  instances,  could  practically  nullify  the  reduction  obtained by split- 
ting.  Hence, the  method of Russian  roulette  should  be  used  with  caution. 

A technique v hereby  equations (38) are satisfied  without  the  introduction of additional 

uncertainty  in  the  final  result is that  in  which,  for  each of the  original { tij} members,  

members are generated,  the  last  member  having a weight {Zi 1 that of the  f i rs t  
i j  

{:j] members.  Hence,  in  this  method,  provided {:i j + 0, we  actually  follow {:;:l} 
members but  weight  the  last  one  differently.  Here  our  relevant  random  variable  has 
changed  from  that  given by  equation (24) to 

i j  

(44) 

27 



where 

V 
i 2 j  7 

and  we  have  subdivided  the  paths as shown  in  sketch ( c ) .  Hence 

" N l  

E [ v i l j d  = N(:)Ii U- ("3) u i j  
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Note that 

w.. Pep-. 

N U.U.. 1 1J 1 1J  1J 1 1 11 lJ  lJ u.u..s.s.. 1 13 13 
E[Y..] =2 Eij[g]Nil?-[I.I.. + r.1.. + r..I. + r.r..] = w..E..[g] 

PiPi j 
= p-p. .E. . [g ]  

1 1J 1 1J 1 1J 

and  thus 

{I:;'} I. . + l  2 r::ilj I..+r. .  = {i2ij] ) results  in a reduction  in  the  variance. In appendix A, 

i t  is shown  that 

where N$ is given  by  equations (32). The  disadvantage  connected  with  this  technique 

is that  only  the  fractions ri and r.. of the  measurements  made on the last members of 
each  stage are being  used. In this  sense,  the  method is not as efficient as i t  might be. 

A more  simple way of proceeding is to  insist  that l/si and  l/s..  are both integral  

1J 

13  
for   every i and j .  In other  words,  even  though  the  optimum  values of these  quantities 
are nonintegral, w e  always  take, as the  value  to  use  for l/si or   l /s . .   the   smallest  
integer  larger  than  or  equal  to  the  optimum  value. In this way,  we  avoid  both of the dis- 
advantages  associated  with  the two methods  previously  described - namely, (1) no  new 
uncertainties arise and (2) each of the  (g. .) measurements  corresponding  to  particular 
values of i and j carries the  same  weight.  However, if this  method is used,  then, as 

13 ' 

1J 0 
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also occurs  in  the  previous method,  the  number of particles  in a splitting  step  never  de- 
creases. 

Kahn (ref. 3) suggests two separate  treatments  in a splitting  step  and  which of the 
two treatments  an  individual  member  receives  depends  on its values of the  measured 
x-variables.   Sample  members in a spli t t ing  step are classed as belonging  to  either a 
type I or I1 region. In type I regions,  the  optimum  value of l/si or  l/s.. is less than 
or equal  to,  say, 0. 5 s o  it is desired  to  decrease  the  number  sampled in these  regions; 
in  type I1 regions,  the  optimum  value of l/si or l/s.. is larger than 0. 5 so the  num- 
ber  sampled  in  these  regions  should  not  decrease. Kahn uses  Russian  roulette on type I 

region  members  whereby a member  having  an  optimum  value of 

11 

11 

l/si = ri 

0. 5 is given  the  chance of - .  of going  on  and  the  chance of {~~~~~ of being  killed, 

thus  satisfying  equations (38). For  type I1 region  members,  "integral"  splitting is 

used  where  the {:ij] taken  on is the  reciprocal of the  integer  closest  to  the  optimum 

1/Si 
1/Sij 

value  of { ). . After going  through two s tages  of splitting  in  each of which a mem- 

ber can be  classified  into  one of the two regions I and 11, there  are four classes of mem- 
bers,   that  is, 1-1,  1-11, II-I, and 11-11. Equations (32) and  (41)  apply  in  this  case  to 
yield  the  proper  expression for the  variance. 

EXTENSION O F  ANALYSIS TO ANY NUMBER O F  STAGES 

Equation  (32b)  gives the expression  for  variance  where two stages  have  been  em- 
ployed,  each  stage  being a composite  stage  consisting of an  importance  sampling  step 
followed by a splitting  step.  This  equation  may be easily  generalized  to  apply  to  any 
number of stages.  For  example, i f  there  were  three  composite  stages,  then  the  appro- 
priate  relation  becomes 

2 
(w.u..E..[g] - wiEi[g]) - E[g]) 

2 

W.U.. 11 
1 11 

i, j i 
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where 

w.. = w.u..s.. 
1J 1 11 11 

w. = u.s 
1 l i  J 

and  where  the  symbol p has  been  introduced to denote  the  unconditional  probabilities - 
namely, 

a. = p. = probability  that x1 takes  on its ith value set 

p i j  = p.p.. = probability that x1 takes  on its ith value set 

1 1  

1 11 

and x2 its jth value set, simultaneously 

aijk =f'ijPijk = PiPijPijk = probability  that x1 takes on its 

ith value  set, x2 its j th  value  set,  and x3 its k 
value  set,  simultaneously 

th 

In  general, for any  given  number K of successive  composite stages, the  equation 
for variance  can be written 

p = l  il,i2,. . . ,ip 

U. lli2. . . i  Eili2. . . i  [gl 
P- 1 P P 



o r  

- p .  . E. . 
2 

ill2. . . i  wili2. . . i  ill2. . . i  
P- 1 P- 1 P- 1 

where pi is the  probability  that x1 takes  on its iih value  set, pi is the  probability 
1 1 2  - 

that  both x1 takes on its iih value  set,  and x2 its if value  set,  etc. 

hold for  the  cases  where  the  stages are pure  importance  sampling  stages (s=1) or  pure 
splitting  stages  (u=l). (We shall  designate a composite  stage by the  symbol "V', a pure 
importance  stage by "I", and a pure  splitting  stage by "S". ) Also, as demonstrated 
previously,  these  expressions  may  be  readily  modified  to  apply  to  continuous  variables. 
Finally,  these  expressions  must  be  adjusted  in  accordance  with  the  relations of the  pre- 
ceding  section if applicable. 

Again, as noted  just  after  equations  (33),  these  expressions  for  the  variance  also 

I1 

OPTIMIZATION OF THE  WEIGHT  FACTORS  FOR  NON-NEGATIVE  g 

If, for  the  moment,  we  ignore how the  actual  splitting  process at any  given  stage is 
to be  effected,  expressions  for  optimum  weight  factors may be  worked  out. For example, 
in  the  case of two pure  importance  stages (I-I), the  weight  factors ui and u.. satisfy 
equations (14a') and  (14b'),  respectively,  and  the  optimum  choice of these  weight  factors 
is given by equations (10') and  (15')  where  equation (13') applies.  For  the  case of two 
composite  stages, @-Q where  g is non-negative,  the  weight  factors satisfy the  condi- 
tions of equations  (34)  and  their  optimum  choice is governed by equations (36). 

13 

For  the  general  situation, it should first be  noted  that  the  number of stages i n  the 
sampling  procedure  does  not  necessarily  change  the  minimum  variance  attainable. A s  an 
example,  let  us  again  restrict  ourselves  to  non-negative  g  and  consider  the  three  stage 
sampling I-S-9, that is, where  the  f irst   stage is a pure  importance  stage,  the  second 
pure  splitting,  and  the  last a composite  stage. In this  case,  si=l and u. . = l  so  that 

11 
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w. = u. 
1 1  

and  equation (48a) can  be  written 

The  constraints  to  be  satisfied by the  weight  factors are 

c Pijk 

ui jk 
k 

Using  the  method of Langrangian  multipliers  to  determine  the  minimum of No2 sub- 
ject  to  the  constraints of equations  (52), we find that the  reciprocals of the  optimum 
weight  factors satisfy 
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where E: is defined  by  the  equation 

c; E E i r E ? . [ g ] ] = x  L p..E?.[g] 11 4 
j 

(54) 

where  the  sum of the last two terms  on  the  r ight is non-negative as shown  by 

coupled  with  the  relation 

"""""""""""""""""""""""""""""""""""""""" 

Another  way of demonstrating  that E .  1 2 Ei[g] is 
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However, if the  splitting  stage  in I-S-\k is eliminated by  changing  to  an  I-(@)23 
sampling  where (:P) denotes a composite  stage  for  the two se t s  of variables  x2  and 
x3 simultaneously,  then,  equation  (32)  applies  where j - (j,  k) so  that 

23 

The  constraints  to be satisfied by the  weight  factors are 

The  reciprocals of the  optimum  weight  factors  for  non-negative g are given  by 
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and  the  minimum  variance for non-negative  g is 

A 
No 2 = E2 [..i(jkJ 

m2 3 
(59) 

Hence, if m23  of  equation  (59) is equal  to  m2m3 of equation  (55),  then  the  minimum 
variance of an  sampling is less than or equal  to  the  minimum  variance of an  
1-S-* sampling. (Of course,  in  order  to  attain  the  minimum  variance  in both cases, 
the  answer  E[gj  among  other  things  must  be known before  sampling  begins. ) Note  that 
the  optimum  biasing of the I stage  in  the  sampling is adjoint  biasing  whereas, 
in  the  1-S-@  sampling,  the  optimum  biasing of the I stage  does  not  correspond  to  ad- 
joint  biasing. 

(\Tf)123 sampling,  then  the  minimum  variance  expression is again  given  by  equation  (59) 
with  mZ3  going  over  to m123 and  the  optimum  biasing of the  importance  step of the 
composite (9) 123 stage  corresponds  to  adjoint  biasing,  namely, 

Another  point  may  be  discussed  in  connection  with  our  problem. If we  consider a 

A %I 
u(ijk) 

Again  the  minimum  variance  attainable is not  affected  adversely. 
It must  be  mentioned  here  that a three-variable (@)123 sampling  yields  an  optimum 

minimum  variance  that is, in  general, less than a single-variable 9 sampling  (contain 
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ing  the  same  number of elements  in  the  sample)  wherein only the first variable x1 is 
measured.  For a sampling  and  non-negative g, the  minimum  variance is 

"1 

whereas  equation (59) with m123 replacing  m23  holds  for  the (IF) 123 sampling.  Inas- 
much as 

as demonstrated  in  appendix B, our  contention is readily  established. 
For  non-negative  g,  it  turns out that  with  any  given  number K of sampling  stages,  

the  minimum  variance  with  the  least  number of members  in  the  sample is obtained i f  the 
last   stage is composite  and all stages  except  the  last are adjoint-biased  pure  importance 
sampling  stages.  The  importance  step of the  composite  stage  should  be  adjoint  biased 
and  the  splitting  step  should  be  biased  in  accordance  with 

1 - - 
A 

W. E lli2. . . i 
K 

The  minimum  variance  for  this  situation is 

1 

It is instructive  to  investigate  the  general  problem of the  optimum  biasing of a s tage 
for  other cases than  that  just  presented.  It is found that,   in  order  to  set  up the  optimum 
biasing of a stage,  one  must know the  nature of the  stages  following  the  stage  in  question. 
The  optimum  biasing  results  for  non-negative g are depicted  in  the  accompanying 
table I. The  following  notation is used  in  the  table: 
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2 2 2  2 2 
7 E E[g 1; Ti Ei[g 3; 72. F Eij[g 1; . . . 1.l 

E: Ei  E..[g] ] ; E . .  E Eij [12~h E. [g] 1 ; -  J 

J 
where  the  symbol 0 stands for  any  quantity.  For  exam?le, by equations (67), 

2 2 2 
1 11 11 

y. (7. .) = Ei [ T .  . ]  - Ei  [g] 

The  symbol mi is the  magnification  factor for the ith stage. Of course,  mi = 1 if the 
ith stage is a pure  importance  sampling  stage. 

Equation  (Bla)  shows  that 

and  equation  (Blb)  shows  that 

so that 
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2 = Ei = Ei [':jM . . ] 
A s  can  be  seen  from  table I, the  optimum  importance  sampling  step of a composite 

s tage is always  adjoint  biased.  Also,  in  general,  the  optimum  choice of a weight  factor 
for a particular  stage  depends  on  the  nature of the stages  following  the  stage  under  con- 
sideration - in  particular,  on whether  the  stages  terminate  before  the first pure  splitting 
or  composite  stage  occurs.  (Note  that  the results are  the  same  for  the  pure  spli t t ing 
stage  and  the  splitting  step of the  composite  stage. ) The  blank  spaces in the  tabulation 
for  the S o r  S+ steps  indicate  that  the  minimum  variance is independent of the  biasing 
employed  with  these  stages  and,  hence,  for  simplicity,  uniform  biasing is to be em- 
ployed. 

A s  an  illustration of the  use of table I, le t  us consider a four-variable  sampling of 
non-negative  g  which is to  proceed as a-I-S-I. The  following  conditions  apply  in  gen- 
eral  to  the  weight  factors: 

x-" a i j k  = m1m3 
Wijk 

i, j ,  k 

/1 Uijkl 
1 

According  to  table I, the  optimum  weight  factors  are  given by 

1 stage: a followed by I-S . . s t  
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Importance  step I,: 

Splitting  step Sa: 

2nd stage: I followed by S . . . 

Qrd stage: S followed by I 

u.. 1 1J 
A E.[€..] 

1J  

1 -  m 1 m 3 y.. qk('ijk1) 
_ _  ,. 
Wijk EIYijk(Tijkl)l 

qth stage: I (last  stage) 

(It  may  be  noted  that  eq.  (72e) arises  from  an  "extrapolation" of table I. ) Substituting 
these  values  into  the  expression  for No2 yields  the  result 

mlN m1m3N 
(73) 

where  each of the  terms  on  the  right  side is non-negative. 
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OPTIMIZATION OF T d E  SIZE OF THE  SAMPLE  AT EACH STAGE 

The  magnification factors m1 and m3 may  themselves be optimized.  Suppose,  on 
the  average,  the  total  cost T of conducting  the Monte Carlo  analysis  for  the  example 
Q-I-S-I just  considered is given  by  an  expression of the  form 

T = c *l N + c12(mlN) + cS3(mlN) + c14(mlm3N) + cg(mlm3N) 

where 

cql  = average  cost  per  sample  member  processed  through  composite  stage 1 

I c12 = average  cost  per  sample  member  processed  through  importance  stage  2 
cs3 = average  cost  per  sample  member  processed  through  splitting  stage 3 

C I 4  = average  cost  per sam?le  member  processed  through  importance  stage  4 

c = average  cost   per  sample  member of measuring  g 

The  above  equation  can  be  written as 

g 

2  2  2 
1 T = a N + a2mlN + a3mlm3N (74) 

where 

2 
a2 = c12 + c s 3  

2 a3 = c14 + c 
g 

In practice,  cql  and cs3 are not  constants  independent of m1 and m3, respectively, 
but in  this  analysis  we  shall  assume  that  such  dependence  can  be  neglected  without  in- 

troducing  appreciable  error,  The  problem as now set up is the  minimization of 0 

given by equation  (73)  with  respect  to  the  variables N, mlN,  and  mlm3N  subject  to  the 
constraint  that  T of equation  (74) is fixed.  Carrying  out  this  minimization  process re- 
sults  in  the  theoretically  optimum  values 

A 
2 
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,. 
N = O  

and  the  minimum  variance  for  given T is 

(7 5) 

where  the  corrections  to  be  made  dependent on how the  splitting  processes are car r ied  
out are not  included in equation (76). Of course,   since N must  be a positive  integer, 

the  theoretically  optimum result N = 0 is not  allowed  and,  in  actuality, N should  equal 

the smallest positive  integer,  namely, 1. The  reason  that N turns  out to  be  zero is 
that  the  true  optimum  values of the  weight  factors are being  employed.  Appendix C 
shows  that  any  deviations of the  weight  factors  from  their  optimum  values result in   an 

increase  in N. 

h h 

h 

A 

It was  remarked  previously  that  the  corrections  dependent  on how the  splitting 
process  is effected a r e  not  considered  in  equation  (76).  As  an  example of how such  cor-  
rections  may  be  included,  we  turn  again  to  the  three-stage  sampling I-S-* considered 
?reviously.  The  minimum  value of the  variance is given by equation  (55) as 

N m2m3N 

where  the  notation of equations  (65)  and (67) had  been  incorporated.  in  equation  (55a). 
Here  we  also  wish  to  obtain  optimum  values of N, m2N,  and  m2m3N  subject  to  the  con- 
straint  that  the  quantity 

T = b i N +  3 b2m2N 2 + bgm2m3N 2 (77) 

It is realized that equation  (51), f rom which  we  obtain  equation  (55a),  does  not  include 
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the  additional  variance  terms  (such as those  given  in  eq.  (41))  for  the S and  stages. 
Consequently,  equation  (55a)  cannot  represent a true  minimum.  Let  us first consider 
the S stage. It is assumed that the  added  terms, that is, the  second  summation of 
equation  (4l),  constitute  only a small  perturbation. E this is so, then  equations  (53a), 

(53b),  and  (53c)  and  the  result  that a2 is independent of the  form of w..  and,  hence, 
on the  form of s.. can  be  considered as approximately  correct. For simplicity, we can 
take s. - to  be a constant  independent of i and j where, by equations (52a) and (52b), 
this  constant  must  be  l/m2. If Kahn's  procedure is followed,  then  m2 is either a 
positive  integer  (corresponding  to a type I region) or m2 is a fraction  less  than 1 (cor-  
responding  to a type I1 region). In the  first  instance,  m2 is a positive  integer  and all 
r.. are ze ro  so that  the  added  terms of equation  (41)  vanish  and  equation  (55a) is exact. 

Now, since cr2 is independent of (m2N), if the  process of minimization of a2 were 
mechanically  carried  out,  the  optimum  value of (m2N)  would  be  zero.  But,  because  m2 
is restricted  to  the  positive  integers,  the  lowest  value  for  m2  that  can  be  chosen is 
unity  and  the  splitting  stage S is reduced  to a unit  stage U where s.. = 1. In the  sec- 
ond instance,  m is a fraction  less  than 1 and  equation  (51)  must  be  modified  to  include 
the  appropriate  terms of equation (41). Minimization of the  variance  with  such  terms 
included  show that the  optimum  value of m2  for this case is unity.  Thus,  it  has  been 
proved  that,  to  obtain  the  minimum  variance,  the  splitting  stage  becomes a unit  stage 
whereby  the  three-stage  sampling  process  goes  over  to  I-U-@  where  equation  (55a) is 
now 

A 

1J 

11 

11 

11 n A 

11 

2 

N m3N 

Equation (77) becomes 

(79) 

(It should be remarked  that  this  result  holds  in  general;  that is, when the  variance 
of the  sampling  process  does  not  depend on the  form of the  splitting  factor  for a particu- 
lar S stage or  for  the  splitting  step of a composite  stage  (blank  spaces  in  table I), in 
order  to  obtain  minimum  variance,  the  splitting  factor  goes  to  unity. ) Minimization of 

o2 of equation (78) with  respect  to N and m3N subject  to T of equation (79) being 
fixed  yields 

A 
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and 

It  must  be  remarked  that  the  additional  variance  due  to  the  splitting  step of the G stage 
which is equal  to 

has  not  been  incorporated  into  equation  (81)  and  the  optimum  values of r . may  have  to 
be  readjusted  to  keep  the  additional  variance  small. 

ilk 

REMOVAL OF NON-NEGATIVE  RESTRICTION 

Heretofore  we  have  limited  g  to  non-negative  values.  The  hypothesis  that  g  be 
non-negative  meant  that all expectation  values of g are necessarily  non-negative  and 
permitted  us  to  express  the  weight  factors,  which  must  themselves be non-negative 
quantit ies,   in  terms of these  expectation  values.  Table  I  holds  only  for  the case where g 
is non-negative. 

If g  can  take on negative as well as positive  values,  then  equations  such as (36a) 
and  (36b)  cannot,  in  general, be written.  To  demonstrate  the  changes  in  the  relations, 
let   us  treat   the  same  problem (a 1 V - q  .sampling)  which  led  to  equations  (36a) and  (36b) 
but now no longer  regard g as being  restricted  to  non-negative  values.  Equations  (32), 
(34), and  (35) still  apply  and  the  optimum  values of ui, wi, u. and G . .  are given by 

A A I  

lj' 13 
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CY 
1 -  i - - " 

m m a  
1 -  11 

1 2 g.. 
__ - - "~ 

11 kgij] 
where ai denotes  the  absolute  value of Ei[g]  and 0.. the  absolute  value of E. .[g]; 
that is, 

11 11 

ai 3 lEi[g] I ; aij IEij[g] 1; . . . (83) 

Note  that 

so that 

CY. 5 E.[@..] 5 Ei[a.. ] 5 . . . 
1  1 1J 1Jk 

Similarly, 

Q . .  5 E..[(Y.. ] 5 Eij[oijkl] 5 . . . 
11 11 1jk (8  5b) 

The  minimum  value of No2 is found by substituting  equations  (82)  into  equation  (32a): 3 
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A E2 [.gijl  E2[Yi(Uij)] 
No2 = 2 

3 mlm2 
+" - 

~ +Y (ai) 
"1 

Table I1 is a listing of the  optimum  values of the  reciprocal  weight  factors  when g 
can  take on negative as well as positive  values. 

A SIMPLE  EXAMPLE 

We take a simple  example  to  illustrate  the  concepts. We suppose  the  situation as 
shown  in  sketch  (d).  There are two stages of sampling,  the  parameters  being  given  in 

the  sketch.  The  formula  for  the  variance  for  the  two-stage  sampling is given as equa- 
tion  (32a)  to  which  must  be  added  equation (4 l) to  take  into  account  the  added  variance 
introduced by the  splitting  processes. 

The variance  resulting  from  straightforward  sampling (U-U) for  this  example is 

We shall 
(1) u-jv, 
s te?  will  
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I 

Case  (1) U - 9  

Equation  (32a)  becomes 

From table I, the  optimum  choices of the  weight  factors  are 

Substituting  these  values  into  equation  (88)  results  in 

where a correction based on  the  splitting  step is still to be added. 
For m2 = 1, the  reduction  in  variance  over  that of the  straightforward  sampling 

situation  can  be  written as 

= E  

= 1673 + 616 = 2289 

Calculating  the  optimum  weight  factors  for  m2 = 1 from  equations (89) and the 
relation 
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1 

gives 

i j l/w-. 
1J 

l /s . .  
13 

1 1 O+ 2.97 
- 

00 

2 40.32  1.485  0.0368 

3  2. 42  0.0594  0.0245 

2 1 0.  3126 0.594 1. 90 

2 1.875 0. 294 0. 157 

3 0 0 """ 

Following  Kahn's  procedure as described  previously, we  take l/sll and 1/s21 to be 
integers.  In  particular, 1/s21 is taken as 2. This  changes  the  numbers  for  i=2  and 
j = l  from  those  given  previously  to 

1 
" - 2 ,  1 -  - 0. 6252 
s2 1 w21 21 u21 s *  

and  increases m to  slightly  more  than  unity.  Substituting  the  altered  values  for  weight 
factors  into  equation (88) yields  the new values of NoUS as 1310. To this  figure  must 
be  added the increase  in  variance  due  to  the  Russian  roulette  process as given by equa- 
tion  (4 l): 

2 2 

A ( N ~ ~ )  = p.. w. . s . . r . . ( l  - r..)E..[g] 2 
11 13 11 13 13 13 

i, j 

= 38.8 + 14. 2 + 3610 = 3663 
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Hence, the total variance  using  almost  optimum  weight  factors is 

2 
= 1310 + 3663 = 4973 Nuu'l m2=l. 004 

which is a figure  that is larger than  that  obtained  with  straightforward  sampling.  This 
large value is due  to  the  Russian  roulette  process  practiced on the i=2, j=2  branch  which 
results in  the  addition of 3610 to Nu 2 . The  reason  the  term  p22p22w22(1 - r22)E;2[g] 

is much larger than  the  other  terms  in A(Nu 2 ) is that  the  product p.p..E?.[g] is much 
larger for  the  i=2, j=2 branch  than  for the other two branches  in  whlch  Russian  roulette 1. 13 13 

is used. 
In order  to  el iminate  this  large  value of A(Na 2 ), 1/s22 is taken as equal  to 1 giving 

rise to  the new values 

and  thereby  raising  the  value of m2 to  1. 551. Now the  total  variance  becomes 

= 1263 
m2=1.  551 

where  the  contribution to this  f igure by  the  Russian  roulette  process  in  the  splitting  step 
is only  about 50 in  magnitude. 

Case  (2 )  1-1 

Equation  (32a)  becomes 

pijuiuijrij - E 2 k l  

By table I, for this case, 



and 
A 

NuII = E [Tij] - E [g] = 2194 2 2  2 

Here  the  reduction  in  variance is 

4 1  

(93) 

1 

and  the  optimum  weight  factors as given by equations (92) are 

1 1 1.775  1.078 

2  1.206 

3 0. 0682 

2 1 0. 668 0.640 

2  1.744 

3 0 

Case ( 3 )  3-1 

By equation  (32a) 

and  by  table I 

Substituting  equations (95) into  equation (94) resul ts   in  
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where  the  correction  based  on  the  splitting  step of the  composite  stage is not  yet  incor- 
porated. 

Fo r  m1 = 1, 

= 708 + 1304 + 183 = 2195 

The  increase  in  variance  due  to  the  splitting  step  in  the ~TJ stage  must  be  evaluated. 
We get,  for  ml = 1, 

i 1/ii l/Gi 1/gi 

1 0. 1071  2.47  23.04 

2 1.383 0. 37 0. 2675 

Again, if Kahn's  procedure is followed,  then l/sl should  be  taken as 23 whereas l/s2 
is left at the  value 0. 2675.  Applying  equation  (41),  we  find 

A(No 2 ) = piwisiri(l - r . )E .  2 [g] = p w (1 - r2)E2[g] 2 = 1419 
1 1  2 2  

i 
A 

This  value, if left unchanged,  would  more  than  double  the  original  value NaqI. Hence, 
we  take (l/s2) = 1, which  eliminates  Russian  roulette  entirely.  Our  altered  values are 

2 
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i j l/Gi l/Si 1/Wi l/G. 1J . 

1 1 0. 1071  23  2.463 1.078 

2 1.206 

3 0 .0682  

2 1 I. 383 1 I. 383 0. 640 

2 1 .744  

3 0 

The  value of ml  has  been  raised  to  1.707,  and  the  total  variance  becomes 

Case (4) *-$ 
The  equations are 

i i 

where, by table I, 
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I 

and  the  variance of the  sampling  process  does not  depend  on  the  form of the  splitting 
factor si. W e  get 

A s  mentioned  previously, for optimum  results,  the  splitting  step of the first composite 
s tage is eliminated so  that 

and  m is 1. Thus, @ - @  goes  over to I-@ and  equation  (99) now becomes 1 

For  m2 = 1, 

( 10 1) 

= 1673 + 799 = 2472 

and 
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1 1 

U.U.. 
1 1.l 

O+ 

w. - 
1.l 

2. 97 

2 4. 32 1.485  0.3435 

3  0.2593  0.0594  0.229 

2 1 0.432 0. 594 1.372 

2 2. 593 0. 297 0. 1145 

3 0 0 0 

Again,  by  Kahn's  procedure,  we  take 1/sZl equal to unity. In addition,  to  avoid 
an  unduly large  variance  due  to  the  splitting  method, 1/s22 is also set equal  to  unity. 
Hence, 1/wZl = 0.432  and  1/w22 = 2. 593  and these  values  correspond  to a Value fo r  
m2 of 1. 78 1. 

The  formula  for  total  variance now becomes 

= 1063 + 38 = 1101 

SUMMARY AND CONCLUDING REMARKS 

General  formulas  have  been  developed for the  variance  reduction  obtained  under 
different  sampling  schemes  for  the  situation  where  the two techniques of importance 
sampling  and  splitting  and  Russian  roulette are employed.  Optimum  biasing  proce- 
dures  have  been  determined  for  any  number of independent  random  variables  and  the 
resul ts  are shown  in  tables I and 11. 

It is found  that,  when  the  random  variable  under  consideration is non-negative,  the 
minimum  variance  with  the least number of members  in  the  sample is obtained if the   las t  
random  variable is sampled  in a combination  importance-splitting  sampling  manner  and 
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all preceding  variables are sampled  employing  adjoint  biasing. A short  example  has 
illustrated  the  possible  increase  in  variance  that  may  occur if indiscriminate  Russian 
roulette  practices are used. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, September 22,  1970, 
129-01. 
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APPENDIX  A 

A  SPLITTING TECHNIQUE 

We are to  consider  the  splitting  method  in  which,  for  each of the  original gj 
members, {:;tl> members  are generated,  the last member  having a weight  equal  to 

{:iJ that of the first {:j members.  Thus,  an  effective  splitting  factor  equal  to 

p = I i ; j  is obtained. 

" - I..+r..  
S . .  

1.l 
The  random  variable  to be considered is that  given  in  equations  (44)  and (45) of the 

text  and  repeated  here: 

where 

Y = Yij 
i j  

(44) 

. 

The  mechanics of carrying  out  the  sampling  procedure are as follows. A sample of 
s ize  N is f i r s t  picked from  the  xl-population  in  accordance  with  the  probability  distri- 
bution  function pi/ui and ni designates  the  number of members  possessing  the i th 

value  set of xl .  These ni members  generate vi = Iini members,  each  having  an 

associated  weight of wi, and v. = n.  members,  each  having a weight of wiri.  The 
1 

l2 1 
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sample  members  are further  subdivided  in  accordance  with  their  x2-values  where  the 
probability  distribution  function is p../u..  Thus, of the  members  possessing  the i th  
value set of x1 and  the jth value set of x2, there  are n. members  with a weight of 

W.U. where n. = v. 
1 1  l l j  l1 

and  n.  members  with a weight of wiriui where x ni2j = vi2. Finally,  each of these  members  in  turn is split  into (I. +1) members 

where  the last member  has a weight r.. that of the  others.  Hence, for   each i and j,  
there  are four  groups: (1) viljl = I..n. . members  with  weight  wij, (2) vi = I..n. 

members  with  weight  wijri, (3) vi n  members  with  weight  w..r..,  and (4) v. 

= n. members  with  weight  w r.r . .  

1 J  11' 
1 ,j 

12j 
j 

1 
j 

j 

1J  

13 11J 2 1 11 12j 

= i l j  1 3  11 l2j2 

l 2 j  i j  1 1 ~ '  

We  wish  to  determine  the  variance of Y. Proceeding as in  equation (28), we  have 

The  terms of the  f irst   summation  on  the  r ight  side of this  summation  may  be  written as 

There  are   ten  terms  to  be  evaluated,  four  squared  terms  and  six  cross  products,   and 
each  can be handled by the  methods  employed  previously. For example, 

= a2 N -1. A Iij + E..[g]I.. E p t l j ]  
Pi P" 2 2  

gij ui u.. 1 J  13  
13  

57 



and 

where 

L 

E F:lj] = 

Evaluating  each of the  terms  entering  into  equation (A2), we  find  that 

- - p p  w s u.. ri( 1 - ri)Eij[g] 1 2 
i i j  i i q  

where  the  expression  for E [3 :d is given  in  equation  (29).  Continuing  with the computa- 

tions,  we  find  that, for j f j ' ,  

and, for ifi' , 
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where  the  expressions for E [Zij JijJ and E [Jij 3i,j,l are given  in  equations (30) 
and ( 3  l), respectively. 

Substituting  equations (A3),  (A4), and (A5) into  equation  (Al)  results  in 

Similarly,   i t   can be shown that, for the  splitting  method  considered  in  this  appendix, 
if there   were only  one  sampling  stage,  then the change  in  variance would  be  given by 

2 p.w.0 s.r.(l - r.) 
1 l g i l l  1 

i 

and, if there  were three  stages of sampling,  then 

1-siri(1-ri)]~-s-.r . .(1-r . .)]~-sijkrijk(1-r. .  11 1J  11 Ilk 

p .w.s . r . ( l  - r.) 1 1 1 1  1 

The  formula  for  any  arbitrary  number of stages  should now be readily  apparent. 
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APPENDIX B 

PROOF O F  INEQUALITY 

We wish to show  that 

We can  wri te  

j k, 1, . . . 

and  similarly 

Hence, 
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E 

In addition,  we  have  the  relation 

which  can  alternatively  be  shown by  proceeding as follows: 

Ei [.a,] - [.gijd = PijPijkugijk 2 - (2 ' ijPijkugijky 
j ,  k j ,  k 
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Thus, 

Substituting  inequality (B3) into  inequality (B2) yields 

and  inequality  (61)  has  been  proved. It may  be  remarked  that  inequality  (61)  merely 
demonstrates  the  obvious  fact  that  measurement of an  additional two correlated  variable 
sets  in  general  reduces  the  expected  standard  deviation. 
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APPENDIX C 

VARIANCE RELATION  FOR NONOPTIMUM SAMPLING 

In this appendix,  we  will  determine,  for a jP-I-S-I sampling,  the  optimum V a l 1  l e s  
of N, mlN,  and m1m3N that  minimize  the  variance  subject  to  the  constraint  given by 
equation  (74). It will  be  assumed  that  the  weight  factors ui,  wi, uij,  wijk,  and  u.. 
are not at the  optimum  values as given by equations  (72). 

13 kl 

Using  equation  (49b)  where K = 4 and  the  relations 

w.. = u..w. 
13 13 1 

Uijk = 1 

- 
WijM - UijklWijk 1 

that  hold  for a 1V-I-S-I sampling,  we  obtain 

We  can  write  each of the  weight  factors as a s u m  of its optimum  value  and  its  deviation 
from  optimum 

A 

u = U. + AU 
i 1  i 

A 

W. = W .  + AW 
1 1  i 
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where  the  optimum  values are given  in  equations  (72).  Substituting  equations  (C3)  into 
equation  (C2)  gives 

r 1 

A 

The sum of the last two terms  on  the  r ight  side of equation  (C4) is Nu (see eq.  (73)) 
and,  hence,  in  the  event  that all deviations  from  optimum go to zero,  N u  reduces to 

Nu as it should. 

2 
2 

A 
2 

A 

W e  would  like  to  show  that Nu2 is the  smallest  value  that  can  be  obtained  for Nu 2 

by establishing  that  the  sum of the  terms on  the  right  side  other  than  the  last two t e rms  
is larger  than  or  equal  to  zero.  In  order  to  accomplish  this, let us  define A , B , 2 2  

and  C2 by 

A2 = ijkl (Wijk AUijkl  "ijkl Aw.. q k  ) 'ijkl - p.. (Aw..  )E..  [g] q k  i l k   q k  
2 

i, j, k, 1 i, j ,  k 

B2 = Pijk(w. 1 Au.. 11 + i.. 1.l AWi)E:jk[g] - 2 Pi(AWi)Ei  2  [g] 

so  that 

ml mlm3 
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With  the  use of the constraining  conditions on  the  weight  factors as given by equa- 
tions (71), it can be shown  that  each of the  quantities A , B , and  C2 is larger   than or 
equal  to  zero. 

Let us  treat the  quantity C2 in  detail  to  illustrate  the  procedure. By equations  (71), 

2 2  

ui satisfies the  equation 

i 

and,  consequently, 

&- pi - 

i 

Equation  (C9)  can be written 

where 

U.U. 
1 1  

Introducing  equations  (C10)  and  (C12)  into  equation  (C11)  gives 

1 1  
i 

which is the  constraining  condition  that (Aui) must  satisfy. Now equation  (C7)  can  be 
expressed as 

C 2  = E2[g] 
Pi A U i  

(C  14) 

65 

i 



where  equation  (72a)  has  been  employed.  We are now in  the  position  where  we  can mod- 
ify  equation  (C14)  by  using  equation  (C13)  to  yield 

Equation  (C15) is the  desired  relation  that   shows  C2 2 0. 
Treating  the  quantities A2 and  B2  in  like  manner,  we  have 

= P i j k W i j k   q k   q k  
2 E.. [i-.. 11 

L 1  1 
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l 

and 

We see that  minimization of the  variance as given by equation (C8) with respect   to  
the  variables N, mlN, and m1m3N subject  to  the  constraint  expressed by equation (74) 
no longer  yields  zero as the  optimum  value of N but instead  gives 
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(C 18a) 

The  optimum  values of mlN  and  mlm3N  become 

(;,N) = -__ 

-.  " "" "" "" .- (C 18b) 
1 /2 

al  (A2 + B2 + C2) + a2E  [ y . ( ~ . . )  1 IJ ] + a 3 E [ y..  qk('ijk1 

(C 18c) 

and  the  minimum  variance is 

1 /2 
2 

(02) mm . = 1 T ll (A2 + B2 + C2) + a2E[yi(tij)] + a3E  bijk(Tijkli]]  (C19) 

It is to be noted that is not  minimized  with  respect to 
the  weight  factors. To be  redundant, if the  weight  factors  take on their  optimum  values, 

then A + B + C = 0 and 2 2 2  
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APPENDIX D 

SYMBOLS 

A2 

B2 

C2 

I 

mi 
N 

quantity  defined  by  eq.  (C5) 

coefficients  appearing  in  eq. (74) 

quantity  defined by eq. (C6) 

coefficients  appearing  in eq. (77) 

quantity  defined by eq.  (C7) 

coefficients  defined  immediately  before  eq.  (74) 

expectation  value of 0 
expectation  value of 0 given  that 0 is fixed at a 

certain  value 

expectation  value of 0 given  that x1 takes  on  its i th 
value  set  

expectation  value of 0 given  that x1 and x2 take on 
their  ith and jth value set, respectively 

probability  density  function of 0 
probability  density  function of 0 given  that 0 is fixed 

at a certain  value 

function  dependent on a number of sets of random  variables 

integral  portion of the  reciprocal of s. 1 s.. lJ, - . . 7  re- 
spec  tively 

pure  importance  sampling  stage 

importance  sampling  step  in a composite  sampling  stage 

quantity  employed  when  using  the  Langrangian-  multiplier 
technique of minimization  subject  to  constraints 

magnification  factor  for ith stage 

original  number of members  in  sample 

number of s e t s  of variables upon which  g is dependent n 
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n. 
1 

n.. 
1J 

Pijk 

a ijk 

S 

9- 

U 

U i 

U. 
1 j  

number of members  in  sample  possessing ith value set of 
x1  immediately  after  importance  sampling  on  xl-variable 

number of members   in   sample  possessing ith value  set  of 
x1 and jth value set of x2, immediately after impor- 
tance  sampling  on  x2-variable 

probability  that x1 takes on its ith value set 

conditional  probability  that  x2  takes on i t s  j th value set 
given  that x1 has  taken on its ith value s e t  

conditional  probability  that x3 takes  on  its kth  value set 
given  that  x1  and  x2  have  taken on their ith and j 
value  sets,  respectively 

th 

th 

probability  that  x1  and x2 take on their ith and j 
value  sets,  respectively 

probability  that  xl, x and  x3  take on their i , J , th .th 
27 

and  kth  value  sets,  respectively 

fractional  portion of reciprocal of s . , s . .  l J ”  * 7 re-  
spectively 

pure  splitting  sampling  stage 

splitting  step of a composite  sampling  stage 

splitting  factor  dependent on variable  sets  xl,  x2, . . . 
splitting  factor  for x -stage of sampling 

splitting  factor  for  x2-stage of sampling 

constraining  quantity  defined by eq. (74) 

1 

binomial  variable  occurring  in  analysis of Russian  roulette 

unit  sampling  stage 

. importance  sampling  weight  factor  dependent on variable 
se t s  x1,x2, . . . 

importance  sampling  weight  factor  for  xl-stage of 
sampling 

importance  sampling  weight  factor  for x -stage of 2 
sampling 

overall  weight  factor  dependent on variable  sets 

x 1 7 x 2 7  * * . 
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W i 

wij 
X 

. .  

. .  

overall  weight  factor  for  xl-stage of sampling 

overall  weight  factor  for  xl-  and  x2-stages of sampling 

collection of s e t s  of random  variables upon which g is 
dependent 

ith s e t  of random  variables 

random  variable  defined  by  eq. (44) 

random  variable  defined by eq.  (45) 

random  variable  defined by  eq.  (16) 

random  variable  defined by  eq. (17) 

random  variable  defined  by  eq.  (24) 

random  variable  defined by eq.  (25) 

absolute  value of Ei[g] 

absolute  value of E.  .[g] 

quantities  defined by eqs.  (67) 

change  in 0 
quantities  defined by eqs.  (66) 

quantities  defined by eqs.  (54)  and  (65) 

number of stages 

Lagrangian  multiplier 

number of members in sample  immediately  after  splitting 

variance 

variance of 0 

1.1 

variance of g when x and  x2  are  fixed  at  certain  values 

minimum  variance  appearing  in  appendix C 

1 

quantities  defined by eqs.  (64) 

composite  sampling  stage 

composite  sampling  stage  for  variable  sets x1 and  x2 
simultaneously 

7 1  
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Subscripts : 

i 

j 

k 

a ,  P 

Superscripts: 

' (prime) 
A 

any  quantity 

x1  fixed a t   i t s  ith value  set  

x2 fixed at i t s  j th  value  set  

x3  fixed  at  its  kth  value  set 

dummy  indices 

differentiates  from  unprimed  quantity 

optimum  value 
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